SUBSTITUENT EFFECTS IN 1,3-INDANEDIONES*

Alexander Perjéssy
Department of Organic Chemistry, Comenius University, 84215 Bratislava

Received March 12th, 1981

The carbonyl stretching frequencies correlate well with substituent constants in a series of 166 1,3 -indanediones using improved and extended Seth-Paul-Van Duyse equation. Transmissive factors and group electronegativities have been used to find empirical equations for calculation of substituent constants of more complex structural fragments.

1,3-Indanediones and related cyclic 1,3-diketones were investigated ${ }^{2-5}$ to discover linear correlations between the symmetric and asymmetric carbonyl stretching frequencies. In a number of series we have observed ${ }^{6-11}$ that the substituents influence significantly the stretching frequencies of 1,3 -dicarbonyl system. To evaluate the substituent effects in individual series, we utilized correlations according to Hammett, Brown or Yukawa-Tsuno equations.

Earlier ${ }^{13}$ we reinvestigated the original Seth-Paul-Van Duyse equation and derived a simple relationship defining new $X^{+}(R)$ substituent constants on the basis of electrophilic σ^{+}constants:

$$
\begin{equation*}
X^{+}(\mathrm{R})=0.238 \sigma^{+}+1.077 \tag{I}
\end{equation*}
$$

This improvement and simplification allowed us to apply the $X^{+}(\mathrm{R})$ substituent constants to a great number of various carbonyl compounds ${ }^{1,12,13}$.

The scope of the present work was to scrutinize the extension of validity of the improved Seth-Paul-Van Duyse equation to 1,3-indanedione derivatives.

EXPERIMENTAL

The symmetric (ν_{s}) and asymmetric ($v_{\text {as }}$) carbonyl stretching frequencies of compounds I and $I I$ measured prevailingly in our laboratory as dilute solutions in CCl_{4} were used for this investigation.

As the majority of data have been already published we assert below just the numbers of compounds and references: Number 1, 2, 6, 13-15, 19, 27-38, 40, 41, 43-50, 52, 60, 62-68, 71, $72,74,77,78,82-84,86,88,92-97,99,100,103,104,108-110,113,114,116,117,119-121$, 124, 126 and 127 from paper ${ }^{2}$. Number 10, 12, 13, 15, 17, 19 and 20 from paper ${ }^{10}$. Number 2-4

[^0]and $6-8$ from paper ${ }^{9}$. Number 2-11 from paper ${ }^{6}$. Number 1 and $3-7$ from paper ${ }^{8}$. Number $10-13$ and $15-18$ from paper ${ }^{7}$. Number 2-4, 6-12, 14, 16-20, 22, 25 and 27 from paper ${ }^{3}$. Number $1-27$ from paper ${ }^{14}$. Compound $I: \mathrm{Y}^{1}=\mathrm{Y}^{2}=\mathrm{H}, \mathrm{Y}^{1}=$ furyl from paper ${ }^{15}$, Compounds $I I: \mathrm{Y}=\mathrm{H}, \mathrm{Q}=4$-isopropylphenyl; $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=3$-fluorophenyl; $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=4$-fluorophenyl; $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=$ styryl from paper ${ }^{16}$.

I

II

As the CO stretching frequencies of some compounds $I I$ have not yet been published we bring them in cm^{-1} : for $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=1^{\prime}$-methoxyferrocenyl $v_{\mathrm{s}}=1725$ and $v_{\mathrm{as}}=1684$; for $\mathrm{Y}=\mathrm{H}$, $\mathrm{Q}=1^{\prime}$-ethoxyferrocenyl $v_{\mathrm{s}}=1726$ and $v_{\mathrm{as}}=1685$; for $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=1^{\prime}$-chloroferrocenyl $v_{\mathrm{s}}=1729$ and $v_{\mathrm{as}}=1689$; for $\mathrm{Y}=\mathrm{H}, \mathrm{Q}=2$-chloroferrocenyl $\nu_{\mathrm{s}}=1730$ and $v_{\mathrm{as}}=1690$; and for (4-ferrocenyl-2-methoxy)phenyl $v_{\mathrm{s}}=1729.5$ and $v_{\mathrm{as}}=1686.5$.

RESULTS AND DISCUSSION

Substituent Constants

The use of Seth-Paul-Van Duyse equation in the case of 1,3-indanediones required to develop a method of calculation of $X^{+}(\mathrm{R})$ substituent constants of structural fragments attached to the five-membered cyclic 1,3-dicarbonyl skeleton. For this purpose we dismembered the structure of 1,3 -indanediones into two structural fragments R^{1} and R^{2}, whereby the electronic effects of each of one can be expressed by substituent constants $X^{+}\left(\mathrm{R}^{1}\right)$ and $X^{+}\left(\mathrm{R}^{2}\right)$, respectively:

Scheme 1

According to ${ }^{17}$ the substituent constants of groups R^{1} and R^{2} should be mutually independent and so also additive:

$$
X^{+}\left(\mathrm{R}^{1}\right)+X^{+}\left(\mathrm{R}^{2}\right)=\sum X^{+}(\mathrm{R})
$$

In formulas I and $I I$
R^{1} means

and
R^{2} means

Instead of $X^{+}(\mathrm{R})$ value of phthalolyl group we employed substituent constant determined for a phenyl group:

$$
X^{+}() \cong X^{+}(\mathrm{Ph})=1.07
$$

The validity of this approximation can be attested by substituting the value of CO stretching frequency measured in CCl_{4} for dimethyl phthalate ($1734 \mathrm{~cm}^{-1}$) into the improved Seth-Paul-Van Duyse equation ${ }^{12}$. The $X^{+}(\mathrm{R})$ value obtained for phthaloyl group (1.07) is consistent with $X^{+}(\mathrm{Ph})$ value.
In the case of 1,3 -benz $[f]$ indanediones we accepted a similar approximation:

To calculate the $X^{+}(\mathrm{R})$ substituent constants of more complex structural fragments we employed $X^{+}(\mathrm{R})$ values of common elemental substituents ${ }^{12,17}$.

In the case of 1- and 2-naphthyl groups we determined the values of $X^{+}(1-\mathrm{Naph})=$ $=1.06$ and $X^{+}(2-\mathrm{Naph})=1.04$ using Eq. (I) and σ_{α}^{+}constants published previous$1 y^{18}$.

For compounds containing a thiocyanate group we have chosen the following way: According to ${ }^{17}$

$$
\begin{equation*}
X^{+}(\mathrm{R})=\delta^{\prime}+X^{+}(\mathrm{Me}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{\prime}=0.482 \sigma^{*}(\mathrm{R}) \tag{3}
\end{equation*}
$$

From ${ }^{19}$ it is known

$$
\begin{equation*}
\sigma^{*}(\mathrm{R})=6 \cdot 25 \sigma_{1}(\mathrm{R}) \tag{4}
\end{equation*}
$$

Substituting $X^{+}(\mathrm{Me})=1.807$ and using Eqs (2) and (4) it follows:

$$
\begin{equation*}
X^{+}(\mathrm{R})=3.00286 \sigma_{1}(\mathrm{R})+1.807 \tag{5}
\end{equation*}
$$

Finally, for $\sigma_{1}(\mathrm{SCN})=0.58$ we obtained $X^{+}(\mathrm{SCN})=3.55$. The Eq. (5) can be used advantageously to calculate further new $X^{+}(\mathrm{R})$ constants from σ_{I} inductive values, which are more available than the original σ^{*} Taft constants.

To express the electronic effects of a substituted phthaloyl group we utilized Eq. (6) published in ${ }^{17}$ and Eq. (I) as well as the results of paper ${ }^{10}$.

$$
\begin{equation*}
\delta=X^{+}(\mathrm{R})-X^{+}(\mathrm{Ph}) \tag{6}
\end{equation*}
$$

From the above mentioned it follows:

$$
X^{+}\left(\mathrm{Y}^{1}-\mathrm{P}\right)=\mathrm{R}^{+}(\mathrm{Ph})+0 \cdot 119\left[\sigma_{\mathrm{p}}^{+}\left(\mathrm{Y}^{\mathrm{p}}\right)+\sigma_{\mathrm{m}}^{+}\left(\mathrm{Y}^{1}\right)\right]
$$

The $X^{+}(\mathrm{R})$ constant of a substituted methylene group can be calculated analogously to the $X^{+}(\mathrm{R})$ value of a substituted methyl group:

$$
\begin{equation*}
X^{+}\binom{-\mathrm{C}^{2}}{-\mathrm{Y}^{3}}=\chi\left(-\mathrm{C}-\mathrm{C}-X^{+^{2}}\left(\mathrm{Y}^{2}\right)+X^{+^{2}}\left(\mathrm{Y}^{3}\right),\right. \tag{7}
\end{equation*}
$$

where $\chi\left(-\frac{\mathrm{C}}{\mathrm{C}}-\right)=2.55$ is the electronegativity of an $s p^{3}$-hybridized C atom. According to the Eq. (7) the $X^{+}(\mathrm{R})$ constant of methylene fragment is 2.91 .

To determine the $X^{+}(\mathrm{R})$ value for a methylidene group we have used a similar equation:

$$
\begin{equation*}
X^{+}\left(=\mathrm{CH}_{2}\right)=\frac{1}{2} x(\angle \mathrm{C}=)+\frac{2 X^{+2}(\mathrm{H})}{12 X^{+}(\mathrm{H})}=1 \cdot 80, \tag{8}
\end{equation*}
$$

where $\chi(\mathrm{C}=)=2.89$ stands for electronegativity of an $s p^{2}$-hybridized C atom from the side of single bonds. Using $X^{+}\left(=\mathrm{CH}_{2}\right)$ we calculated according to Eq. (9) the $X^{+}(R)$ constant for a 1,1 -vinylidene group, which is a fundamental skeleton of R^{2} in compounds II.

$$
\begin{equation*}
X^{+}\left(\mathrm{C}=\mathrm{CH}_{2}\right)=\frac{1}{2} \chi\left(=\mathrm{C}^{\prime}\right)+\frac{2 X^{+2}\left(=\mathrm{CH}_{2}\right)}{12 X^{+}(\mathrm{H})}=1 \cdot 32, \tag{9}
\end{equation*}
$$

where $\chi\left(=\mathrm{C}^{\prime}\right)=2.14$ means the electronegativity of an $s p^{2}$-hybridized C atom from the side of double bond. Finally, it can be written for a substituted 1,1 -vinylidene fragment:

$$
\begin{equation*}
X^{+}(乙 \mathrm{C}=\mathrm{CH}-\mathrm{Q})=X^{+}\left(\mathrm{C}=\mathrm{CH}_{2}\right)+\pi^{\prime}(\mathrm{C}=\mathrm{C})_{\mathrm{s}-\mathrm{cis}} X^{+}(\mathrm{Q}), \tag{10}
\end{equation*}
$$

where $\pi^{\prime}(\mathrm{C}=\mathrm{C})_{\mathrm{s}-\mathrm{cis}}$ is the transmissive factor of polar effects for a 1,2 -vinylidene group according to definition of Jaffe ${ }^{20}$ and determined ${ }^{13}$ for an s-cis conformation in respect to the CO group (corresponding to 1,3 -indanediones $I I$). If the group Q in compounds $I I$ is more complex and consists of a linear chain of subfragments $Q^{\mathrm{i}}(i=$ $1,2,3 \ldots n$) attached together with single bonds:

$$
\mathrm{Q}=\mathrm{Q}^{1}-\mathrm{Q}^{2}-\mathrm{Q}^{3} \ldots \mathrm{Q}^{\mathrm{n}}
$$

a general formula can be used to calculate the $X^{+}(R)$ values of ${ }^{~} \mathrm{C}=\mathrm{CH} \longrightarrow \mathrm{Q}$ fragments:

$$
\begin{gather*}
X^{+}(\mathrm{C}=\mathrm{CH}-\mathrm{Q})=X^{+}\left(\mathrm{C}=\mathrm{CH}_{2}\right)+ \\
+\pi^{\prime}(\mathrm{C}=\mathrm{C})_{\mathrm{s}-\mathrm{cis}}\left[X^{+}\left(\mathrm{Q}^{1}\right)+\gamma\left(\mathrm{Q}^{1}\right)\left(\delta \mathrm{Q}^{2}\right)+\sum_{i=3}^{\mathrm{n}} \delta\left(\mathrm{Q}^{i}\right) \prod_{\mathrm{j}=1}^{\mathrm{i}-1} \gamma\left(\mathrm{Q}^{\mathrm{j}}\right) \prod_{\mathrm{k}=1}^{\mathrm{i}-2} \pi^{\prime}\left(\mathrm{Q}^{\mathrm{k}}\right)\right] \tag{11}
\end{gather*}
$$

π^{\prime} and γ being transmissive factors of polar effects of subfragments Q^{i} according to definition of Jaffé ${ }^{20}$ and Charton ${ }^{21}$, respectively and δ is given by Eq. (6).

A similar approach can be used to determine the substituent constants for more complex structural fragments R^{2} of compounds I.

$$
\begin{gather*}
\text { E.g. for } \mathrm{R}^{2}=\mathrm{CH} \mathrm{Q} \\
X^{+}(\mathrm{R})=\chi\left(-\frac{\mathrm{C}}{\mid}\right)+\frac{X^{+^{2}}(\mathrm{H})+\left[\mathrm{R}^{+}(\mathrm{QH})+\gamma(\mathrm{Q}) \delta_{\mathrm{p}}(\mathrm{Ph})+\pi^{\prime}(\mathrm{Q}) \gamma(\mathrm{Q}) \delta(\mathrm{Y})\right]^{2}}{12 X^{+}(\mathrm{H})} \tag{12}
\end{gather*}
$$

The values of transmissive factors used in Eqs (1 1) - (12) are listed in Table I.
In the case of $1,1^{\prime}$ - and 1,3 -ferrocenyl groups the transmissive factors γ were not available and therefore we estimated them according to Eqs (13) and (14).

$$
\begin{align*}
\gamma\left(1,1^{\prime}-\mathrm{Fc}\right) & =\frac{\pi^{\prime}\left(1,1^{\prime}-\mathrm{Fc}\right)}{\pi^{\prime}(1,4-\mathrm{Ph})} \tag{13}\\
\gamma(1,3-\mathrm{Fc}) & =\frac{\pi^{\prime}(1,3-\mathrm{Fc})}{\pi^{\prime}(1,4-\mathrm{Ph})} \tag{14}
\end{align*}
$$

The above introduced equations, constants and transmissive factors have been used to calculate the $X^{+}\left(\mathrm{R}^{1}\right)$ and $X^{+}\left(\mathrm{R}^{2}\right)$ as well as the $\sum X^{+}(\mathrm{R})$ values for all 1,3-indanediones I and $I I$.

Correlation Analysis

The arithmetic means of symmetric and asymmetric carbonyl stretching frequencies in a series of 1661,3 -indanediones I and $I I$ provide a statistically significant correlation with $\sum X^{+}(\mathrm{R})$ values (Fig. 1). The estimates of statistical parameters have been calculated with a significance at $>95 \%$ confidence level using a regression program ${ }^{25}$ with a double precision matrix inversion. The correlation analysis renders following results:

$$
\begin{align*}
\bar{v}= & 33.09 \sum \mathrm{X}^{+}(\mathrm{R})+ \tag{15}\\
& \pm 0610.64 \\
& \pm 0.70 \quad \pm 2.44
\end{align*}
$$

$r=0.991$ (correlation coefficient), $s=2.0$ (standard deviation).

Table I

Transmissive factors

Group	π^{\prime}	Ref.	γ	Ref.
CH $=\mathrm{CH}(s$-cis $)$	0.766	13	2.23	22
2,5-Furyl(O-O-trans)	0.803	1	1.4	23
2,5-Thienyl	0.47	7	1.08	23
1,3-Ferrocenyl	0.38	14	~ 1.41	this work
1,1'-Ferrocenyl	0.25	14	~ 0.93	this work
1,4-Phenyl	0.27	24	1.00	a
1,4-Naphthyl	0.27	18	1.00	18

[^1]Fig. 1
Plot of the arithmetical means of ν_{s} and $\nu_{\text {as }}$ vs $\sum X^{+}(\mathrm{R})$ values for 1,3 -indanediones I and $I I$

The regression parameters show that the maximal deviation of experimental data from the straight line is $4 \mathrm{~cm}^{-1}$ and 61% of points deviate less than $2 \mathrm{~cm}^{-1}$.

The same set of data provides following results of a dual parameter correlation of \bar{v} with substituent constants of structural fragments R^{1} and R^{2} :

$$
\begin{aligned}
& \vec{v}= 45.47 \mathrm{X}^{+}\left(\mathrm{R}^{1}\right)+32.94 X^{+}\left(\mathrm{R}^{2}\right)+ \\
& \pm 1597.75 \\
& \pm 10.96 \quad \pm 0.70 \quad \pm 11.30
\end{aligned}
$$

$r=0.991, s=2.0$
The estimate of the first slope is of low statistical significance because of a smaller variation in structure of fragments R^{1} comparing to fragments R^{2}. On the other hand, the estimate of the second slope is statistically more significant and practically equal to the slope of single parameter correlation Eq. (15). This is in agreement with our preceding assumption that the electronic effects of structural fragments R^{1} and R^{2} in 1,3-indanediones should be additive.
It follows that the improved Seth-Paul-Van Duyse equation can be also applied well to the 1,3 -indanediones. The present state indicates ${ }^{26}$ that this equation is valid for more than eight hundred carbonyl stretching frequencies of organic compounds.

Let us compare Eq. (15) with a correlation (Eq. (16)) between the symmetric and asymmetric CO stretching frequencies of 1,3 -indanediones published earlier ${ }^{2}$.

$$
\begin{equation*}
v_{s}=0.781 v_{\mathrm{as}}+412.8 \tag{16}
\end{equation*}
$$

$n=406$ (number of experimental points), $r=0.993, s=1.6$ Substituing for $\bar{v}=\left(v_{\mathrm{s}}+v_{\mathrm{as}}\right) / 2$ we obtained Eqs (15) and (16):

$$
\begin{align*}
& v_{\mathrm{s}}=29 \cdot 02 \sum \mathrm{X}^{+}(\mathrm{R})+1644 \cdot 36 \tag{17}\\
& v_{\mathrm{as}}=37 \cdot 16 \sum \mathrm{X}^{+}(\mathrm{R})+1576 \cdot 91 . \tag{18}
\end{align*}
$$

Equations (17) and (18) can be employed to predict symmetric and asymmetric CO stretching frequencies of a great variety of 1,3-indanediones.

We thank Prof. C. Hansch, Pomona College, Claremont, U.S.A., for multiparameter regression program as well as Dr D. Ondrejičková, Comenius University, Bratislava, for arrangement and adaptation of the program. We express our thanks also to Mrs Z. Susteková for technical assistance.

REFERENCES

1. Perjéssy A., Krutošiková A., Olejnik A. F.: Tetrahedron 31, 2936 (1975).
2. Perjéssy A., Hrnčiar P.: Tetrahedron 27, 6159 (1971).
3. Perjéssy A., Rotbergs J., Oškāja V. P.: This Journal 41, 2209 (1976).
4. Perjéssy A., Temkovitz P., Hrnciar P.: This Journal 41, 2904 (1976).
5. Perjéssy A., Szemes F., Hrnčiar P.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 26, 73 (1978).
6. Perjéssy A., Hrnčiar P., Krutošiková A.: Tetrahedron 28, 1025 (1972).
7. Perjéssy A., Hrnčiar P., Frimm R., Fišera L.: Tetrahedron 28, 3781 (1972).
8. Perjéssy A., Hrnčiar P., Frimm R.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 18, 89 (1973).
9. Krasnec L., Perjéssy A., Hrňiar P.: This Journal 41, 2696 (1976).
10. Perjéssy A., Rotbergs J.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 27, 1 (1979).
11. Temkovitz P., Perjéssy A., Hrnčiar P.: Acta Fac. Rerum Natur. Univ. Comenianae, Chimia 27, 25 (1979).
12. Perjéssy A.: Tetrahedron 29, 3189 (1973).
13. Perjéssy A.: Tetrahedron 29, 3207 (1973).
14. Perjéssy A., Toma $\begin{aligned} & \text { S.: Acta Fac. Rerum Natur. Univ. Comentanae, Chimia, in press. }\end{aligned}$
15. Lácová M., Perjéssy A., Hrnčiar P.: Chem. Zvesti 23, 53 (1969).
16. Agranat I., Lowenstein J., Bergmann E. D.: Israel J. Chem. 7, 89 (1969).
17. Seth-Paul W. A., Van Duyse A.: Spectrochim. Acta A 28, 211 (1972).
18. Perjéssy A., Hrnčiar P.: This Journal 37, 1706 (1972).
19. Palm V. A.: Osnovi Kolichestvenoi Teorii Organicheskikh Reakci, p. 31. Khimia, Leningrad 1967.
20. Jaffé H. H.: Chem. Rev. 53, 191 (1953).
21. Charton M.: J. Org. Chem. 26, 735 (1961).
22. Chatton M.: J. Org. Chem. 30, 552 (1965).
23. Exner O., Simon W.: This Journal 29, 2016 (1964).
24. Zhdanov J. A., Minkin V. I.: Korelacionii Analiz v Organicheskoi Khimii, p. 63. Rostov na Donu 1963.
25. Hansch C., Leo A., Elkins D.: J. Chem. Doc. 14, 57 (1974).
26. Perjéssy A.: Proceedings of IInd Polish-Czech Colloquium on Chemical Thermodynamics and Physical Organic Chemistry, p. 183, Kazimierz 1980.

[^0]: * Part IV in the series Application of the Seth-Paul-Van Duyse Equation; Part III: Tetrahedron 3I, 2936 (1975).

[^1]: ${ }^{a}$ By definition.

